Theorem 2 Radon-Nikodym Theorem Let \((\Omega,\mathcal{B},P)\) be the probability space. Suppose \(v\) is a positive bounded measure and \(v \ll P\). Then there exists an integrable random variable \(X\in \mathcal{B}\), such that
\[v(E) = \int_E XdP, \quad \forall E \in \mathcal{B} \] \(X\) is a.s. unique (\(P\)) and is written
\[X=\frac{dv}{dP}.\] We also write \(dv=XdP\)
Definition of Conditional Expectation
Suppose \(X\in L_1(\Omega,\mathcal{B},P)\) and let \(\mathcal{G}\subset \mathcal{B}\) be a sub-\(\sigma\)-field. Then there exists a random variable \(E(X|\mathcal{G})\), called the conditional expectation of \(X\) with respect to \(\mathcal{G}\), such that
- \(E(X|\mathcal{G})\) is \(\mathcal{G}\)-measurable and integrable.
- For all \(G\in\mathcal{G}\) we have \[ \int_G XdP = \int_G E(X|\mathcal{G})dP\]
Notes.
- Definition of conditional probability: Given \((\Omega,\mathcal{B},P)\), a probability space, with \(\mathcal{G}\) a sub-\(\sigma\)-field of \(\mathcal{B}\), define \[P(A|\mathcal{G})=E(1_A|\mathcal{G}), \quad A\in \mathcal{B}.\] Thus \(P(A|\mathcal{G}) \) is a random variable such that
- \(P(A|\mathcal{G}) \) is \(\mathcal{G}\)-measurable and integrable.
- \(P(A|\mathcal{G}) \) satisfies \[\int_G P(A|\mathcal{G})dP = P(A\cap G), \quad \forall G \in \mathcal{G}. \]
- Conditioning on random variables: Suppose \(\{X_t, t\in T \}\) is a family of random variables defined on \((\Omega,\mathcal{B})\) and indexed by some index set \(T\). Define \[\mathcal{G}:=\sigma(X_t,t\in T)\] to be the \sigma-field generated by the process \(\{X_t, t\in T \}\). Then define \[E(X|X_t, t\in T)= E(X|\mathcal{G}).\]
Note (1) continues the duality of probability and expectation but seems to place expectation in a somewhat more basic position, since conditional probability is defined in terms of conditional expectation.
Note (2) saves us from having to make separate definitions for \(E(X|X_1)\), \(E(X|X_1,X_2)\), etc.
Countable partitions Let \(\{\Lambda_n, n\ge 1 \}\) be a partition of \(\Omega\) so thyat \(\Lambda_i \cap \Lambda_j = \emptyset, i\neq j\), and \(\sum_n \Lambda_n=\Omega\). Define
\[\mathcal{G}=\sigma(\Lambda_n, n\ge 1)\] so that
\[\mathcal{G}=\left\{ \sum_{i\in J}\Lambda_i: J\subset\{1,2,\dots \} \right\}.\] For \(X\in L_1(P)\), define
\[E_{\Lambda_n}(X)=\int XP(d\omega|\Lambda_n)=\int_{\Lambda_n}XdP/P\Lambda_n , \] if \(P(\Lambda_n)>0\) and \(E_{\Lambda_n}(X) = 18\) if \(P(\Lambda_n)=0\). We claim
Countable partitions Let \(\{\Lambda_n, n\ge 1 \}\) be a partition of \(\Omega\) so thyat \(\Lambda_i \cap \Lambda_j = \emptyset, i\neq j\), and \(\sum_n \Lambda_n=\Omega\). Define
\[\mathcal{G}=\sigma(\Lambda_n, n\ge 1)\] so that
\[\mathcal{G}=\left\{ \sum_{i\in J}\Lambda_i: J\subset\{1,2,\dots \} \right\}.\] For \(X\in L_1(P)\), define
\[E_{\Lambda_n}(X)=\int XP(d\omega|\Lambda_n)=\int_{\Lambda_n}XdP/P\Lambda_n , \] if \(P(\Lambda_n)>0\) and \(E_{\Lambda_n}(X) = 18\) if \(P(\Lambda_n)=0\). We claim
- \[E(X|\mathcal{G})\overset{a.s.}{=} \sum_{n=1}^\infty E_{\Lambda_n}(X) 1_{\Lambda_n} \] and for any \(A\in \mathcal{B}\)
- \[P(A|\mathcal{G})\overset{a.s.}{=} \sum_{n=1}^\infty P(A|\Lambda_n)1_{\Lambda_n}\]