MathJax

Wednesday, January 28, 2015

Convergence Concepts

Implications of convergence



1. Almost Sure Convergence

Examples of statements that hold almost surely (a.s.)

  • Let \(X,X'\) be two random variables.  Then \(X=X'\) a.s. means \[P[X=X']=1;\] that is, there exists an event \(N\in \mathcal{B}\), such that \(P(N)=0\) and if \(\omega\in N^c\), then \(X(\omega)=X'(\omega)\).
  • If \(\{X_n\}\) is a sequence of random variables, then \(\lim_{n\rightarrow \infty}X_n\) exists a.s. means there exists an event \(N\in \mathcal{B}\), such that \(P(N)=0\) and if \(\omega\in N^c\) then \[\lim_{n\rightarrow \infty}X_n(w)\] exists. It also means that for a.a. \(\omega\), \[\underset{n\rightarrow \infty}{\text{lim sup}}X_n(\omega)=\underset{n\rightarrow \infty}{\text{lim inf}}X_n(\omega).\] We will write \(\lim_{n\rightarrow \infty}X_n = X\) or \(X_n \overset{a.s.}{\rightarrow}X\).
  • If \(\{X_n\}\) is a sequence of random variables, then \(\sum_n X_n\) converges a.s. means there exists an event \(N\in \mathcal{B}\), such that \(P(N)=0\), and \(\omega \in N^c\) implies \(\sum_n X_n(w)\) converges.

2. Convergence in Probability

Suppose \(X_n, n\ge 1\) and \(X\) are random variables.  Then \({X_n}\) converges in probability (i.p.) to \(X\), written \(X_n \overset{P}{\rightarrow}X\), if for any \(\epsilon > 0\) \[ \lim_{n\rightarrow \infty} P[|X_n-X|>\epsilon]=0.\]
Almost sure convergence of \(\{X_n\}\) demands that for a.e. \(\omega\), \(X_n(w)-X(w)\) gets small and stay small.  Convergence i.p. is weaker and merely requires that the probability of the difference \(X_n(w)-X(w)\) being non-trivial become small.

It is possible for a sequence to converge in probability but not almost surely.

Theorem 1. Convergence a.s. implies convergence i.p. Suppose that \(X_n, n\ge 1\) and \(X\) are random variables on a probability space \((\Omega,\mathcal{B},P)\).  If \[ X_n \rightarrow X, \; a.s.\] then \[X_n \overset{P}{\rightarrow}X.\]
Proof.  If \(X_n \rightarrow X\) a.s. then for any \(\epsilon\),
\[\begin{aligned}
0\;&=P([|X_n-X|>\epsilon]i.o.) \\
  &=P(\underset{n\rightarrow \infty}{\text{lim sup}}[|X_n-X|>\epsilon]) \\
  &=\lim_{N\rightarrow \infty}P(\bigcup_{n\ge N}[|X_n-X|>\epsilon] ) \\
  &\ge \lim_{n\rightarrow \infty}P[|X_n-X|>\epsilon]
\end{aligned} \]

3. \(L_p\) Convergence

Recall the notation \(X\in L_p\) which means \(E(|X|^p)<\infty \). For random variables \(X,Y\in L_p\), we define the \(L_p\) metric for \(p\ge 1\) by
\[d(X,Y)=(E|X-Y|^p)^{1/p}.\]  This metric is norm induced because
\[\|X\|_p := (E|X|^p)^{1/p} \] is a norm on the space \(L_p\).

A sequence \(\{X_n\}\) of random variables converges in \(L_p\) to \(X\), written
\[X_n \overset{L_p}{\rightarrow}X , \] if
\[ E(|X_n-X|^p) \rightarrow 0 \] as \(n\rightarrow \infty\).

Facts about \(L_p\) convergence.
  1. \(L_p\) convergence implies convergence in probability: For \(p>0\), if \(X_n\overset{L_p}{\rightarrow} X\) then \(X_n \overset{P}{\rightarrow}X \).  This follows readily from Chebychev's inequality, \[P[|X_n-X|\ge \epsilon] \leq  \frac{E(|X_n-X|^p|)}{\epsilon^p} \rightarrow 0.\]
  2. Convergence in probability does not imply \(L_p\) convergence.  What can go wrong is that the \(n\)th function in the sequence can be huge on a very small set.
    Example.  Let the probability space be \( ([0,1],\mathcal{B}([0,1]),\lambda) \), where \(\lambda\) is Lebesgue measure and define
    \[X_n = 2^n 1_{(0,\frac{1}{n}) }\] then
    \[P[|X_n| > \epsilon ] = P \left( (0,\frac{1}{n}) \right)  = \frac{1}{n} \rightarrow 0 \] but
    \[ E(|X_n|^p) = 2^{np} \frac{1}{n} \rightarrow \infty \]
  3. \(L_p\) convergence does not imply almost sure convergence.
    Example.  Consider the functions \(\{X_n\}\) defined on \( ([0,1],\mathcal{B}([0,1]),\lambda) \), where \(\lambda\) is Lebesgue measure.
    \begin{align*}
        X_1 &= 1_{[0,\frac{1}{2}]},  \quad  X_2 = 1_{[\frac{1}{2},1]} \\
        X_3 &= 1_{[0,\frac{1}{3}]},  \quad  X_4 = 1_{[\frac{1}{3},\frac{2}{3}]} \\
        X_5 &= 1_{[\frac{1}{3},1]},  \quad  X_6 = 1_{[0,\frac{1}{4}]}, \cdots \\
    \end{align*} and so on, Note that for any \(p>0\),
    \[ E(|X_1|^p)=E(|X_2|^p)=\frac{1}{2},\\
        E(|X_3|^p)=E(|X_4|^p)=E(|X_5|^p)=\frac{1}{3}, \\
        E(|X_6|^p)=\frac{1}{4}, \cdots \] so  \(E(|X_n|^p) \rightarrow 0\) and
    \[X_n \xrightarrow[]{L_p} 0.\]
    Observe that \(\{X_n\}\) does not converge almost surely to 0.

No comments: