\[ \mathcal{P} = \{ p_\theta(y) | \theta \in \Theta \subset \mathbb{R}^P \}\]
is regular if it satisfies the following conditions
- Support of \(p_\theta(y)\) does not depend on \(\theta\) for all \(\theta \in \Theta\)
- \(\frac{\partial}{\partial \theta} p_\theta(y) \) exists
- Optional \( \frac{\partial^2}{\partial \theta^2} p_\theta(y) \) exists
Note \[ \frac{\partial }{ \partial \theta } \ln p_\theta(y) = \frac{1}{p_\theta(y) } \frac{\partial }{ \partial \theta } p_\theta(y) \quad \quad (4) \]
Define the score function (log := natural log)
\[ S_\theta (y) := \nabla_\theta \log p_\theta(y) \]
Note also
\[ E_\theta \{ 1 \} = 1 = \int_\mathcal{Y} p_\theta(y) dy \]
\begin{align*} 0 &= \frac{\partial }{ \partial \theta }E_\theta \{1\} \\
&= \frac{\partial }{ \partial \theta }\int p_\theta(y) dy \\
&\overset{1}{=} \int \frac{\partial }{ \partial \theta } p_\theta(y) dy \\
&\overset{2,4}{=} \int p_\theta(y) \frac{\partial }{ \partial \theta } \log p_\theta(y) dy \\
&= E_\theta \{ S_\theta(y) \}
\end{align*}
No comments:
Post a Comment