Theorem
A matrix \( \mathbf{A} \in \mathbb{R}^{n\times x}\) with spectrum \(\sigma(\mathbf{A}) = \{ \lambda_1, \dotsc, \lambda_k \} \) is diagonalizable if and only if there exist matrices \(\{ \mathbf{G}_1, \dotsc, \mathbf{G}_k\} \) such that \[ \mathbf{A} = \lambda_1 \mathbf{G}_1 + \dotsb + \lambda_k \mathbf{G}_k \] where the \(\mathbf{G}_i\)'s have the following propertiesThe expansion is known as the spectral decomposition of \(\mathbf{A}\), and the \(\mathbf{G}_i\)'s are called the spectral projectors associated with \(\mathbf{A}\).
- \(\mathbf{G}_i\) is the projector onto \(\mathcal{N} (\mathbf{A} - \lambda_i \mathbf{I}) \) along \(\mathcal{R} ( \mathbf{A} - \lambda_i \mathbf{I} ) \).
- \(\mathbf{G}_i\mathbf{G}_j = 0 \) whenever \( i \neq j \)
- \( \mathbf{G}_1 + \dotsb + \mathbf{G}_k = 1\)
Note that being a projector \(\mathbf{G}_i\) is idempotent.
- \(\mathbf{G}_i = \mathbf{G}_i^2\)
And since \(\mathcal{N}(\mathbf{G}_i) = \mathcal{R}(\mathbf{A} - \lambda_i \mathbf{I} ) \) and \(\mathcal{R}(\mathbf{G}_i) = \mathcal{N}(\mathbf{A} - \lambda_i \mathbf{I} ) \), we have the following equivalent complimentary subspaces
- \( \mathcal{R}(\mathbf{A} - \lambda_i \mathbf{I} ) \oplus \mathcal{N}(\mathbf{A} - \lambda_i \mathbf{I} ) \)
- \( \mathcal{R}(\mathbf{G}_i) \oplus \mathcal{N}(\mathbf{A} - \lambda_i \mathbf{I} ) \)
- \( \mathcal{R}(\mathbf{A} - \lambda_i \mathbf{I} ) \oplus \mathcal{N}(\mathbf{G}_i) \)
- \( \mathcal{R}(\mathbf{G}_i) \oplus \mathcal{N}(\mathbf{G}_i) \)
No comments:
Post a Comment