MathJax

Monday, September 21, 2015

Notes on conjugate function (Fenchel conjugate)

The conjugate function (Fenchel conjugate)
  • Counterpart to Fourier transform in Convex Analysis
The conjugate of \(f\) (\(f\) not necessarily convex):
\[ f^*(y) = \underset{x\in \text{dom }f}{\sup} (y^Tx - f(x)) \]

The domain of \(f^*\) consists of \(y\in \mathbb{R}^n\) for which the supermum is finite, i.e. for which the difference \(y^T x - f(x)\) is bounded above on \(\text{dom }f\).

\(f^*\) is convex, since it is the pointwise supremum of a family of affine functions of \(y\).

Examples:
  • Affine function. \(f(x)=ax+b\).  \(f^*(y) = yx-ax-b = (y-a)x-b\).  

\[ f^*(y)  =  \left\{ \begin{array}
                                     -b    &y=a\\
                                   \infty &\text{otherwise}
                              \end{array}  \right. \] with \(\text{dom }f^* = \{a\}\).

  • Negative logarithm. \(f(x) = -\log x\), with \(\text{dom }f=\mathbb{R}_{++}\).  

The function \(xy + \log x\) is unbound above if \(y\ge 0\) and reaches its max at \(x=-1/y\) otherwise.
\[ f^*(y) =  \left\{ \begin{array}
                                   -1-\log (-y)    &y\lt 0\\
                                   \infty           &\text{otherwise}
                              \end{array}  \right. \] with \(\text{dom }f^* = \{y\; |\; y\lt 0 \}\)

Fenchel's inequality

Fenchel's inequality can be obtained from the definition of conjugate function
\[  f(x) + f^*(y) \ge x^T y , \quad \forall x,y\]
since for each \(y\),
\[  f^*(y) \ge x^Ty - f(x) \Leftrightarrow  f(x) + f^*(y) \ge x^Ty \]

No comments: