Given a convex optimization problem with objective \(f_0\). \(x\) is optimal iff it is feasible and
\[ \nabla f_0(x)^T (y-x) \ge 0 \quad \text{for all feasible } y \]
Unconstrained problem: \(x\) is optimal iff
\[ x\in \text{dom }f_0, \quad \nabla f_0(x) = 0 \]
Equality constrained problem:
\[ \text{minimize } f_0(x) \quad \text{ subject to } Ax=b \]
\(x\) is optimal iff there exists a \(\nu\) such that
\[ x\in \text{dom }f_0, \quad Ax=b, \quad \nabla f_0(x)+A^T\nu = 0\]
Note: Lagrange multiplier optimality condition.
Minimization over nonnegative orthant
\[ \text{minimize } f_0(x) \quad \text{ subject to } x\succeq 0 \]
\(x\) is optimal iff
\[ x\in\text{dom }f_0, \quad x\succeq 0, \quad \left\{ \begin{array}{lr}
\nabla f_0(x)_i \ge 0, \quad &x_i = 0 \\
\nabla f_0(x)_i = 0, \quad &x_i \ge 0
\end{array} \right. \]
Note: The last condition is a complementarity condition.
No comments:
Post a Comment