Processing math: 0%

MathJax

Monday, September 21, 2015

Notes on convex functions

Basic Properties

[TODO]

Examples
  • Affine functions are both convex and concave
  • All norms are convex (e.g. Frobenius norm, Spectral norm)
  • Max function f(x)=max is convex on \mathbb{R}^n
  • Quadratic-over-linear function f(x,y)=x^2/y is convex on \text{dom }f=\mathbb{R}\times\mathbb{R}_{++}
  • Log-sum-exp f(x)=\log \sum^n_{i=1}e^{x_i} is convex on \mathbb{R}^n
  • Geometric mean f(x)=(\prod^n_{i=1}x_i)^{1/n} is concave on \text{dom }f=\mathbb{R}^n_{++}
  • Log-det is concave on \text{dom }f=\mathbf{S}^n_{++}
Restriction of a convex function to a line

f:\mathbb{R}^n \rightarrow \mathbb{R} is convex iff the function g:\mathbb{R} \rightarrow \mathbb{R}
g(t) = f(x+tv), \quad \text{dom } g = \{ t\; |\; x + tv \in \text{dom } f \} 
is convex in t for any x \in  \text{dom } f, v \in \mathbf{R}^n

Upshot: can check convexity of f by checking convexity of functions of one variable.

Epigraph and sublevel set 

\alpha-sublevel set of f:\mathbb{R}^n \rightarrow \mathbb{R}, is defined as all x for which the value of f(x) is less then \alpha
C_\alpha = \{ x \in \text{dom } f \; | \; f(x) \leq \alpha \}

Property: sublevel sets of convex functions are convex (converse is false)

epigraph of f:\mathbb{R}^n \rightarrow \mathbb{R}:
\text{epi } f = \{ (x,t) \in \mathbb{R}^{n+1} \; | \; x \in \text{dom } f, f(x) \leq t \}

Property: f is convex iff  \text{epi }f is a convex set

Operations that perserve convexity

methods for establishing convexity of a function
  1. verify definition (often simplified by restricting to a line)
  2. for twice differentiable functions, show \nabla^2 f(x) \succeq 0
  3. show that f is obtained from simple convex functions by operations that preserve convexity
    • nonnegative weighted sum
    • composition with affine function
    • pointwise maximum and supremum
    • composition
    • minimization
    • perspective

No comments: