\[ p_\theta(x) = h(x) \exp ( q^T(\theta) T(x) - b(\theta) ) I_{supp}(x), \quad Z = \exp(- b(\theta)) \]
Regular family (gives you completeness)
Conditions for regularity,
- support \(p_\theta(x)\) independent of \(\theta\)
- finite partition function \(Z(\theta) < \infty,\; \forall \theta\)
- Interior of parameter space is solid, \( \mathring{\Theta} \neq \emptyset \),
- Interior of natural parameter space is solid \( \mathring{\mathcal{Q}} \neq \emptyset \)
- Statistic vector function and the constant function are linearly independent. i.e. \( [1, T_1(x),\dotsc,T_K(x)] \) linear indep. (gives you minimal statistic)
- twice differentiable \( p_\theta(x) \)
Curved family (only know statistic is minimal)
An exponential family where the dimension of the vector parameter \(\mathbf{\theta}=(\theta_1,\dotsc,\theta_r)\) is less than the dimension of the natural statistic \(\mathbf{T}(\mathbf{x}) \) is called a curved family.
Identifiability of parameter vector \( \mathbf{\theta} \).
When statistic is minimal, then it is a matter of ensuring \(q: \Theta \mapsto \mathcal{Q} \) defines a 1-1 mapping from desired parameter space to natural parameter space.
No comments:
Post a Comment