⟨y,Ax⟩=⟨A∗y,x⟩
We have the properties
- N(A)=N(A∗A) and R(A∗)=R(A∗A)
- N(A∗)=N(AA∗) and R(A)=R(AA∗)
And noting that dimR(A)=dimR(A∗), we have
- rank(A∗A)=rank(AA∗)=rank(A)=rank(A∗)
For matrix operators, dimension of the column space is equal to the dimension of the row space
- column space: dim(R(A))=r
- row space: dim(R(AH))=r
- Nullspace: dim(N(A))=n−r
- Left nullspace: dim(N(AH))=m−r
Characterization of matrix AB
For matrices A and B such that AB exists
- N(B)⊂N(AB)
- R(AB)⊂R(A)
- N(A∗)⊂N((AB)∗)
- R((AB)∗)⊂R(B∗)
From 2 and 4
rank(AB)≤rank(A),rank(AB)≤rank(B)
No comments:
Post a Comment