Processing math: 100%

MathJax

Monday, August 29, 2016

Properties of Linear and Matrix Operators

Define the adjoint A of operator A such that
y,Ax=Ay,x
We have the properties

  • N(A)=N(AA) and R(A)=R(AA)
  • N(A)=N(AA) and R(A)=R(AA)
And noting that dimR(A)=dimR(A), we have
  • rank(AA)=rank(AA)=rank(A)=rank(A)

For matrix operators, dimension of the column space is equal to the dimension of the row space
  • column space: dim(R(A))=r
  • row space: dim(R(AH))=r
  • Nullspace: dim(N(A))=nr
  • Left nullspace: dim(N(AH))=mr
Characterization of matrix AB
For matrices A and B such that AB exists
  1. N(B)N(AB)
  2. R(AB)R(A)
  3. N(A)N((AB))
  4. R((AB))R(B)
From 2 and 4
rank(AB)rank(A),rank(AB)rank(B)

No comments: